
1 
 

Volume integral equation for electromagnetic scattering: Rigorous 

derivation and analysis for a set of multi-layered particles with 

piecewise-smooth boundaries in a passive host medium 

Maxim A. Yurkin1,2,* and Michael I. Mishchenko3 

1 Voevodsky Institute of Chemical Kinetics and Combustion SB RAS,  

Institutskaya Str. 3, 630090, Novosibirsk, Russia 

2 Novosibirsk State University, Pirogova Str. 2, 630090, Novosibirsk, Russia 

3 NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025, USA 

*Corresponding author: yurkin@gmail.com 

 

ABSTRACT 

We present a general derivation of the frequency-domain volume integral equation (VIE) for the 

electric field inside a non-magnetic scattering object from the differential Maxwell equations, 

transmission boundary conditions, radiation condition at infinity, and locally-finite-energy 

condition. The derivation applies to an arbitrary spatially finite group of particles made of isotropic 

materials and embedded in a passive host medium, including those with edges, corners, and 

intersecting internal interfaces. This is a substantially more general type of scatterer than in all 

previous derivations. We explicitly treat the strong singularity of the integral kernel, but keep the 

entire discussion accessible to the applied scattering community. We also consider the known 

results on the existence and uniqueness of VIE solution and conjecture a general sufficient 

condition for that. Finally, we discuss an alternative way of deriving the VIE for an arbitrary object 

by means of a continuous transformation of the everywhere smooth refractive-index function into a 

discontinuous one. Overall, the paper examines and pushes forward the state-of-the-art 

understanding of various analytical aspects of the VIE. 
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I. INTRODUCTION 

The frequency-domain volume integral equation (VIE) for the electric field inside a non-magnetic 

scattering object has been known for more than 60 years [1]. It has traditionally been intended to be 

a rigorous formulation of the electromagnetic-scattering problem equivalent to the more 

conventional one based on the differential Maxwell equations subject to appropriate boundary 

conditions [2–4]. Moreover, the VIE has been used as the fundamental basis for a number of 

“numerically exact” computational methods to simulate electromagnetic scattering, the most 

popular one being the discrete dipole approximation (DDA) [5]. The latter has been used to 

calculate electromagnetic scattering by virtually all classes of scatterers, including those with sharp 

edges and internal interfaces [6–8]. 

Despite the vast existing literature on the subject (see, e.g., the monographs [2,4,9]), the 

theoretical understanding of the VIE remains incomplete and incommensurate to the domain of its 

actual practical applications. Indeed, the literature is largely grouped around the following two 

extremes: (i) accessible derivations with all complex issues swept under the rug with the intent to 

maximally shorten the path to practical computations [4,10,11], and (ii) mathematically rigorous 

treatises that commence with concepts such as Banach spaces, Hölder continuity, etc. and thus are 

hardly comprehensible to the applied scattering community [2,9,12–14]. As a consequence, the 

publications from the first group tend to ignore fundamental issues such as the strong singularity of 

the integral kernel [4,10] and the explicit use of boundary conditions for a scatterer with a distinct 

boundary [11], which can potentially lead to ambiguities. On the other hand, rigorous mathematical 

studies from the second group are typically based on simplified assumptions of smooth particle 

boundaries and continuous interiors [2,9,12,14], whereas sharp edges/vertices and internal 

interfaces are hardly mentioned [13]. Moreover, mathematical rigor comes at the expense of various 

limiting assumptions on the constitutive parameters, e.g., that both the scatterer and the host 

medium are non-absorbing dielectrics [14] or that the real part of the electric permittivity is positive 

[2,12,13]. As a result, the current understanding of the conditions guarantying the existence and 

uniqueness of the VIE solution, and that of the scattering problem in general, remains fragmentary, 

especially in the case of an absorbing host medium (see also Refs. [3,15,16]). Thus, gray zones 

exist, where practical numerical simulations have been pursued, but a rigorous mathematical 

analysis is still not available. 

To fill these essential gaps, we present an accessible, self-contained, and general derivation of 

the VIE from the differential Maxwell equations, transmission boundary conditions, radiation 

condition at infinity, and locally-finite-energy condition with an explicit treatment of the kernel 

singularity. Our derivation applies to a representative type of scattering object such as a spatially 
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finite group of multi-layered particles with piecewise smooth (intersecting) boundaries and internal 

interfaces (with a smooth refractive index in between) immersed in a passive unbounded host 

medium. To further demonstrate the equivalence of the differential and integral formulations of 

electromagnetic scattering, we derive the former from the latter. We also generalize the results of 

existing mathematical analyses of the VIE and formulate a conjecture about sufficient conditions 

ensuring the existence and uniqueness of its solution for this type of scatterer. Finally, we discuss an 

alternative way of deriving the VIE for an arbitrary object with discontinuities by means of a 

continuous transformation of the everywhere smooth refractive-index function into a discontinuous 

one. 

II. FORMULATION OF THE SCATTERING PROBLEM 

Following the lines of derivations in Chapter 4 of Ref. [4] and in Ref. [17], we start with the 

Maxwell curl equations for time-harmonic [with the implicit exp	(−i ) convention] electric and 

magnetic fields,  and , assuming non-magnetic isotropic materials throughout the entire space: ∇ × ( ) = i ( )∇ × ( ) = −i ( ) ∈ ,∇ × ( ) = i ( )∇ × ( ) = −i ( ) ( ) ∈ , (1)

where i = √−1,  is the vacuum permeability,  is an unbounded homogeneous external 

medium with a constant electric permittivity ≠ 0 and  is the interior of a scatterer with a 

coordinate-dependent permittivity . The entire space is assumed to be devoid of impressed 

(enforced) sources. Note that, generally, both  and  are complex and depend on the angular 

frequency . In particular, the external medium can be absorbing (lossy), but not active, i.e., we 

require that 0 ≤ arg <  discarding the non-physical option of a negative real  (see Chapter 1 

of Ref. [3]). 

Equations (1) can be rewritten as a single differential equation: ∇ × ∇ × ( ) − ( ) = ( ), ∈ ℝ \ , (2)( ) ≝ [ ( ) − 1] ( ), (3)

where =  with ℜ( ) > 0 and ℑ( ) ≥ 0 is the wave number of the exterior, ( ) and ( ) are the complex refractive index and permittivity relative to that of the external medium:1 ( ) = ( ), ( ) ≝ 1, ∈ ,( )⁄ , ∈ , (4)

and = . The complex square root in Eq. (4) is potentially ambiguous, but this is not a 

problem as long as we only use . More generally, we assume that the support of ( ) − 1 is 

                                                 
1 In the following discussion we will mostly employ , as that is more common in the light-scattering community. 
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bounded;  can be defined as the largest unbounded open connected region with ( ) = 1;  

is a union of open bounded regions in which ( ) is smooth2 [including internal voids with ( ) = 1]; and  is a closed surface containing all discontinuities of ( ) or its derivatives, 

including the exterior scatterer boundaries and internal interfaces. In particular, we have the 

following partition in which the components are pair-wise disjoint: ℝ = ∪ ∪ . (5)

This definition applies to a general finite multi-particle scatterer, with potentially multi-layered 

components. The particular complex values of  that are physically viable and/or required for well-

posedness of the mathematical problem are discussed in Section VII. 

An essential further assumption is that  consists of several disjoint components: = , (6)

each of which is a connected smooth closed surface. Then we have the standard boundary 

conditions: × [ ( ) − ( )] = 0× [ ( ) − ( )] = 0 ∈ , (7)

where 1 and 2 label different sides of the specific component of the boundary (the corresponding 

limits are implied) and  is the outward-pointing normal to . 

The total field [i.e., the solution of the inhomogeneous differential equation (2)] can be 

separated into the incident and scattered fields: ( ) = ( ) + ( ), (8)

where ( ) is the solution of the corresponding homogeneous equation [Eq. (2) with a zero right-

hand side], i.e., the field when no scatterer is present. Mathematically, the latter can be formulated 

using a Silver–Müller radiation condition [2] to select a single specific solution of Eq. (2), × [∇ × ( )] + i ( ) → 0, (9)

uniformly over all directions / . Note however that even a weaker condition ( -convergence) is 

sufficient [18]: lim∆→ 1∆ d | × [∇ × ( )] + i ( )|∆ = 0, (10)

where ∆ is the spherical surface with a radius ∆ centered at the origin ( = ∆). The standard 

scattering problem consists in finding ( ) satisfying Eqs. (2), (7), (8), and (10) given a 

physically viable ( ), i.e., the one satisfying the free-space Maxwell equations. 

                                                 
2 Hereinafter we use “smooth” in the sense “sufficiently smooth” in an effort to keep the discussion relatively simple. 
However, specific function spaces requiring boundedness or Hölder-continuity of derivatives up to a certain order are 
discusses in the referenced mathematical literature. 
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III. DYADIC GREEN’S FUNCTION AND THEOREM 

Recall now the definition of the free-space dyadic Green’s function (Cartesian Green’s tensor), e.g., 

from Appendix B of Ref. [4]: ( , ′) ≝ ̅ + ∇⊗ ∇ ( , ) = exp(i )4 ̅ − ⊗ + i − 1 ̅ − 3 ⊗ , (11)

where = − ′, = | |, ̅ is the unity dyadic, and ( , ) is the scalar Green’s function: ( , ) = ( ) ≝ exp(i )4  (12)

satisfying (∇ + ) ( , ) = − ( − ′), (13)

where ( ) is the tree-dimensional delta function. 

The essential property of the Green’s dyadic is that it satisfies ∇ × ∇ × ( , ′) − ( , ) = ̅ ( − ). (14)

Also, it is symmetric with respect to both argument interchange and dyadic transposition 

(superscript T), ( ′, ) = ( , ′) = [ ( , )] , (15)

and satisfies the following radiation condition [cf. Eq. (9)]: × [∇ × ( , )] + i ( , ) → (1⁄ ). (16)

In particular, it converges to zero uniformly over all directions / . In the limit of a very small , ( , ) → ( , ) + (1⁄ ), (17)

where the static Green’s dyadic is ( , ) = (∇⊗ ∇) 14 = − 14 ̅ − 3 ⊗ . (18)

Moreover, ∇ × ( , ) = (∇ ) × ̅ = × ̅4 exp(i )(i − 1) → − × ̅4 + (1). (19)

The Green’s dyadic and Eq. (14) are commonly used together with the dyadic Green’s 

theorem (Eq. (A4.75) of Ref. [9]): d [(∇ × ∇ × ) ⋅ − ⋅ (∇ × ∇ × )] = d {( × ) ⋅ (∇ × ) + [ × (∇ × )] ⋅ }, (20)

where  is any bounded region,  is the outward surface normal, and  and  are an arbitrary 

vector and a dyadic varying smoothly with r (i.e., at least, having integrable second derivatives). 
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IV. DERIVATION OF THE VIE FOR A SIMPLE SCATTERER 

We first consider a simple single-body scatterer  without internal interfaces, i.e., the one having 

a connected boundary  (or, equivalently, connected , see Fig. 1). Proceeding along the lines 

of Chapter 4.3 of Ref. [4] (but with an interchange of  and ), we scalar post-multiply Eq. (2) by ( , ) and scalar pre-multiply Eq. (14) by ( ): [∇ × ∇ × ( )] ⋅ ( , ) − ( ) ⋅ ( , ) = ( ) ⋅ ( , ),	 (21)( ) ⋅ [∇ × ∇ × ( , )] − ( ) ⋅ ( , ) = ( ) ( − ). (22)

Subtracting Eq. (22) from Eq. (21) yields [∇ × ∇ × ( )] ⋅ ( , ) − ( ) ⋅ [∇ × ∇ × ( , )]= ( ) ⋅ ( , ) − ( ) ( − ). (23)

A typical derivation of the VIE [4,10] would use Eq. (20) with = ,3 = , and = , to 

be further simplified using Eq. (23). However, this path is not completely rigorous (leads to 

ambiguous results) due to the strong singularity of ( , ) at =  [11]. Two different ways to 

address this problem are mentioned in the footnote on p. 98 of Ref. [9]: rigorous treatment of delta 

functions and their derivatives or exclusion of the singularity. 

 

Fig. 1. A simple single-body scatterer with a smooth boundary and without internal interfaces. 

We choose the second option and define  (and = ) as a small volume around  

which shrinks to  when → 0 while keeping the same shape.4 Then, we can apply the above 

described combination of Eqs. (20) and (23) to = \  (assuming ∈ ) and let → 0: lim→ d [ ( ) ⋅ ( , ) − ( ) ( − )]\= 	 − lim→ 	 d × ( ) ⋅ ∇ × ( , ) + × ∇ × ( ) ⋅ ( , ) . (24)

If ∈ , no exclusion of the singularity is needed and Eq. (24) is valid with all the -related 

parts being removed (as discussed below). 

The -function term on the left-hand side of Eq. (24) always vanishes, which may seem 

counterintuitive, but it would be compensated by the additional terms on the right-hand side. To 

                                                 
3 Smoothness of ( ) follows from smoothness of ( ), which is further discussed in Section IX. 
4 This  should not be confused with the delta function. 
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evaluate the first term in the integral over , we use Eq. (19). Since the latter has a  singularity, 

we need to keep only the zeroth order of ( ), which is ( ). Thus, lim→ d × ( ) ⋅ ∇ × ( , ) = − ( ) ⋅ lim→ d × ∇ × ( , )
= ( ) ⋅ lim→ d × ( × ̅)4 = ( ) ⋅ d ⊗4 − 	tr
= − 	 ⋅ ( ), 

(25)

where the first and third transformations are based on the dyadic identities ( × ) ⋅ = ⋅ × and × × = ⊗ ⋅ − ( ⋅ ),	 (26)

respectively, while  ≝ d ⊗4  (27)

is the self-term dyadic (the source term) [11] (a.k.a. depolarization dyadic – see Chapter 3.9 of 

Ref. [9]) which depends on the shape but not on the size of  (the limit in the fourth part of 

Eq. (27) was removed accordingly) and on the position of  inside . Importantly, this dyadic is 

always real symmetric with tr = 1	 (hence the last transformation in Eq. (25)). For a sphere or a 

cube centered at , it takes the simplest form = 3⁄  [11]. 

In the second term of the integral over  in Eq. (24), ( , ) can be replaced by ( , ) 
[cf. Eq. (17)]. Then lim→ d × ∇ × ( ) ⋅ ( , )

= − 1 lim→ d × ∇ × ( ) ⋅ ∇ ⊗ 4 	
= − 1 lim→ d ∇ × ∇ × ( ) ⋅ ⊗4 = − ⋅ ( ) + ( ) , 

(28)

where the last transformation keeps only the zeroth order of ∇ × ∇ × ( ) and uses Eqs. (2) and 

(27), while the second one is based on d ( × ) ⋅ (∇⊗ ) = d ⋅ [ × (∇⊗ )]
= − d 	 ⋅ [∇ × ( ⊗ )] + d 	 ⋅ [(∇ × )⊗ ] = d (∇ × ) ⋅ ( ⊗ ), (29)

where	  is a zero dyadic, ( ) and ( ) are arbitrary smooth on  vector fields [in our case ∇ ×( ) and (4 )⁄ , respectively], and the zeroing of the term in the middle follows from the 
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dyadic version of the Stokes theorem (Eq. (A4.70) of Ref. [9]) and the absence of a boundary for a 

closed surface. 

Before finalizing this derivation, let us define an auxiliary vector function based on the right-

hand side of Eq. (24): ( , ) ≝ × ( ) ⋅ ∇ × ( , ) + × ∇ × ( ) ⋅ ( , ),	 (30)

which also implicitly depends on the normal  of the integration surface S. Importantly, ( , ) is 

continuous when  crosses S (if ∉ ), owing to either the boundary conditions (7) (and ∇ × =i ) or the continuity of all constituent functions if ( ) is continuous across S. Thus, it does 

not matter which side of the surface the ( , ) is integrated over, as long as the same normal is 

used. In the following, we always assume the outward normal  to any closed surface (considered 

individually), and the orientation of this normal with respect to an integration volume is accounted 

for by a sign before the surface integral, as in Eq. (24). 

Another property of ( , ) is lim∆→ d ( , )∆ = , (31)

which follows from Eq. (10) [18], as briefly discussed in the following. First, Lemma 2 of Ref. [18] 

states that dΩ| ( )|∆ = (1). (32)

Second, d 	 ( , ) =∆ dΩ{ × [∇ × ( )] + i ( )} ⋅ ( , )∆− dΩ	 ( ) ⋅ { × [∇ × ( , )] + i ( , )}∆ . (33)

Third, applying the Cauchy–Schwarz inequality to Eq. (33) and using Eqs. (10), (11), (16), and 

(32), we obtain Eq. (31). Note that nonzero absorption in the external medium would only make the 

derivation easier, since it causes ( , ) to decay exponentially when → ∞. 

Next, we combine Eqs. (24), (25), and (28) and interchange  and  to shift the focus from 

the integration variable and conform to a common notation [4]. This yields lim→ d 	 ( ) ⋅ ( , )\ − ( ) ⋅ ( ) + ( ) = d 	 ( , ), (34)

where ( ) ≝ 1, ∈ ,0, otherwise (35)
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is the indicator function which allows for a single expression for both the interior and the exterior of 

the scatterer. For the latter, Eq. (34) follows directly from Eq. (24) with the -related parts being 

removed. 

Repeating the derivation starting from Eq. (24) for  instead of  and assuming =∆⋃ , where the superscript “−” denotes the non-standard direction of the normal, we obtain: lim→ d 	 ( ) ⋅ ( , )\ − ( ) ⋅ ( ) + ( )
= lim∆→ ∆ − d ( , ). (36)

Adding up Eqs. (34) and (36) and employing Eqs. (3), (4), (15), and (31) along with ( ) +( ) ≡ 1 ( ∈ ℝ \ ) yields ( ) = lim→ d ( , ) ⋅ ( )\ − ⋅ ( ), (37)

or equivalently ( ) = ( ) + lim→ d [ ( ) − 1] ( , ) ⋅ ( )\ − [ ( ) − 1] ⋅ ( ), (38)

where ∈ ℝ \  and  in the integrals can be replaced by ℝ  (assuming that  has a zero 

volume and is isolated in the actual integration). Note also that Eqs. (37) and (38) hold for ∈ ℝ  

when ( ) is smooth in ℝ  but ( ) − 1 has a finite support; the latter effectively replaces . 

The main advantage of the above derivation in comparison with the more common ones [2,4] 

is that it treats the singularity of  rigorously and explicitly. In this respect it is similar to the work 

by Yaghjian [11] and van Bladel (Chapter 7.9 of Ref. [9]), but applies to the general boundary 

conditions (7) and is more explicit in the employment of the radiation condition (10). The 

importance of a careful treatment of the singularity was discussed in detail in Ref. [11]. More 

recently, it was further exemplified by the use of rectangular cuboid elementary volumes (dipoles) 

in the DDA [19]. In this case the non-symmetric shape of  implicitly leads to ambiguities which 

can only be settled through an explicit consideration. 

We additionally note that the strong singularity can be avoided by considering a different 

integro-differential equation, see, e.g., Chapter 12.5.2 of Ref. [9]: ( ) = ( ) + ( ̅ + ∇⊗ ∇) ⋅ d [ ( ) − 1] ( , ) ( ). (39)

As noted in Ref. [11], the exclusion of  and the -term in Eq. (38) appear exactly from the proper 

interchange of differentiation and integration in Eq. (39) [cf. Eq. (11)]. Since Eq. (39) is less 
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commonly used as a basis of numerical methods, we do not discuss it in detail. Most importantly, 

the equivalence of Eqs. (38) and (39) holds as long as ( ) is smooth in . 

V. EXTENSION TO A SET OF SEVERAL MULTI-LAYERED PARTICLES 

We further consider a scatterer partitioned into several disjoint components, = , (40)

each of which is a connected open region with a smooth ( ). Then Eq. (6) implies that each  

separates exactly two regions from the list , , , … and contributes to their boundaries with 

opposite signs of the surface normal (Fig. 2). 

 

Fig. 2. An example of a complex multi-body multi-layered scatterer with smooth interfaces. Each 

closed surface separates exactly two domains, one of which may be the external medium. 

Using the results obtained in the preceding sections, it is trivial to generalize the VIE to such a 

scatterer. We write down Eq. (34) for each  and add them up together with Eq. (36). Then the 

integrals over each of the  will occur exactly twice on the right-hand side and with opposite signs 

and thereby will cancel each other. The left-hand side will lead exactly to Eq. (37) if one makes use 

of ( ) + ( ) = 1 − ( ), (41)

which follows from Eqs. (5) and (40) as well as from ( ) being additive with respect to the union 

of disjoint sets. The possibility of such an extension was mentioned in Chapter VI of Müller [2], but 

we are unaware of any previous explicit derivation. 

VI. EQUIVALENCE OF VIE AND DIFFERENTIAL EQUATIONS 

The goal of this section is to prove the equivalence of the boundary-value problem for the 

differential Maxell equations and the VIE by explicitly deriving Eq. (2), the boundary conditions 
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(7), and the radiation condition (9) from Eq. (38). In principle, one can analyze the invertibility of 

all intermediate steps in the previous sections, but a direct derivation is both simpler and more 

instructive. 

The derivation of Eq. (2) is completely trivial for ∈ , where the third term (with ) in 

Eq. (38) vanishes and  can be removed from the integral since ( , ) does not have singularities 

in the integration domain ( ∈ ). Moreover, differentiation and integration can be freely 

interchanged, leading to ∇ × ∇ × ( ) − ( ) = ∇ × ∇ × ( ) − ( ) + d [∇ × ∇ × ( , ) − ( , )] ⋅ ( ) = ,  (42)

where we have used the homogeneous version of Eq. (2) for ( ) and Eq. (14).  

For ∈  the situation is more complicated owing to the fact that the exclusion volume  

depends explicitly on the differentiation variable  upon which ∇ × ∇ × is acting. Fortunately, this 

dependence is simple (amounts to a translation); hence, the Reynolds transport theorem (or multi-

dimensional Leibnitz integral rule) implies ∇ × d 	 ( , )\ ( ) = d [∇ × ( , )]\ ( ) − d [ × ( , )]( ) , (43)

where the minus sign appears due to the natural normal to \  pointing inside  (in contrast to 

the used ). Next, Eq. (38) itself implies that the limit → 0 is well-behaved (smooth over ); 

hence, it can be interchanged with differentiation, which together with Eq. (43) implies ∇ × lim→ d ( , ) ⋅ ( )\ = lim→ d 	[∇ × ( , )] ⋅ ( )\ − lim→ d × ( , ) ⋅ ( ) . (44)

The surface integral is transformed similarly to Eqs. (28) and (29). ( , ) can be replaced by ( , ) [cf. Eq. (17)], leading to lim→ d 	′ × ( , ) ⋅ ( ) = − 1 lim→ d × ∇ ⊗ 4 ⋅ ( ) 	
= − 1 lim→ d ∇ × ⊗4 ⋅ ( ) = −∇ × ⋅ ( ) , (45)

where = − = − ; the subscript  indicates that ∇ acts only on the corresponding function to 

the right of it; the last transformation follows from Eq. (27) and leaves only the zeroth order of 

derivatives of ( ); and the middle transformation is based on 
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d 	 × (∇⊗ ) ⋅ = d [ × ∇( ⋅ )] − d × (∇⊗ ) ⋅
= d 	 ∇ × ( ⊗ ) ⋅ , (46)

where ( ) and ( ) are arbitrary smooth on  vector fields, while the zeroing out of the term in the 

middle again follows from the Stokes theorem (Eq. (A1.43) of Ref. [9]) and the absence of a 

boundary for a closed surface. Note that the right-hand side of Eq. (45) exactly cancels the curl of 

the last term in Eq. (38). This is expected since the remaining volume integral in Eq. (44) does not 

depend on the shape of , owing to the weak ( ) singularity of the integrand [cf. Eq. (19)].5 

Adding another curl and using Eqs. (43)–(45), we get ∇ × ∇ × ( ) − ( ) = lim→ d [∇ × ∇ × ( , ) − ( , )] ⋅ ( )\  

−lim→ d × ∇ × ( , ) ⋅ ( ) + ⋅ ( ) = − ⋅ ( ) + ⋅ ( ) = ( ), (47)

where the volume integral vanishes owing to Eq. (14) and the surface integral is evaluated 

analogously to Eq. (25), but with ( ) multiplied from the left replaced by ( ) multiplied from 

the right and with an extra minus sign due to the change of the integration variable. 

An alternative option is to start with Eq. (39), leading to ∇ × ∇ × ( ) − ( ) = −(∇ + ) d ( , ) ( ) = ( ), (48)

where we have used Eq. (13) and ∇ × ∇ × − (∇⊗ ∇) ⋅ = ∇ × ∇ × − ∇(∇ ⋅ ) = −∇  (49)

for an arbitrary smooth ( ). At the first sight, the differentiation and integration cannot be 

interchanged in Eq. (48), since the resulting singularity will be of order  and thus non-

integrable. However, Appendix B of Ref. [20] shows that the interchange can be done, albeit 

without an explicit treatment of some intermediate surface integrals. This reference also explains 

why a direct proof is important, and why many previous derivations do not fully demonstrate the 

equivalence of the differential and integral Maxwell equations. 

To derive the boundary conditions (7), we first note that the limit of → 0 in Eq. (37) can be 

replaced by the requirement of a small enough exclusion volume  (not necessarily connected). In 

particular,  ( ) = d ( , ) ⋅ ( )\ + d [ ( , ) − ( , )] ⋅ ( ) − ( , ) ⋅ ( ), (50)

                                                 
5 Note also that the  term is linear in  and hence vanishes when integrated over a small spherically symmetric 
volume. 
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where ( , ) ≝ d ′ ⊗ ′4  (51)

is a generalization of Eq. (27), and we have implicitly used d ( , ) = − ( , ) (52)

as a consequence of the dyadic Stokes theorem. The integral over  in Eq. (50) is regular, owing to 

Eq. (17) and the smoothness of ( ) (up to the boundary). It is related to the finite-size correction of 

the dipole polarizability (the so-called  term) in the DDA [5], and its magnitude is ( ‖ ( )‖), 
where  is the largest dimension (diameter) of . 

Second, we consider r to be already very close to the interface between the domains  and  

(one of them can be ), so that the boundary is locally flat. Then, we choose  to consist of two 

strongly oblate rectangular prisms on both sides of the interface with dimensions ℎ × ×  (ℎ ≪
) and the smallest dimension oriented along the normal  to the interface (see Fig. 3). We also 

assume that  is much smaller than both the wavelength in the outer medium 2 /ℜ( ) and the 

interface curvature. Next, consider the variation of  over the central line of the prisms along  at a 

distance not larger than ℎ 2⁄  from the interface (on either side of the interface, but not exactly on it). 

The first volume integral in Eq. (50) is smooth over the whole line and has no jump discontinuities 

over the interface, owing to ‖ − ′‖ ≥ ℎ 2⁄ . The second integral is negligibly small and also 

smooth over r. The remaining  term may have discontinuities due to either ( , ) or ( ). 
However,  is the sum of those for each prism; while for a strongly oblate prism it equals ⊗  

and  for an arbitrary  inside and outside the prism, respectively [11]. Thus, ( , ) = 	 ⊗  

over the whole line,6 and we finally obtain ( ) − ( ) = ⋅ ( ) − ( ) , ∈ , (53)

where we have used the continuity of ( ) across the interface. Equation (53) implies the 

continuity of both × ( ) and ⋅ ( ) ( ) across the interface. The above derivation is yet 

another example of the advantage of using an arbitrary (not necessarily spherical) exclusion 

volume. 

                                                 
6 One can also start with a shape other than the prism (e.g., a hemisphere), as long as it contains a flat part of the 
boundary. Then as  approaches this flat part from inside,  would approach the same limit. 
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Fig. 3. An exclusion domain for deriving the boundary condition for ( ) consisting of two oblate 

rectangular prisms. The width perpendicular to the image (not shown) also equals . Gaps between 

the prisms and the locally-flat interface are shown solely for convenience. The dashed central line 

denotes the variation of  used to calculate the limit when approaching the interface. 

The continuity of ( ), or, equivalently, of ∇ × ( ), across the interface follows from 

Eqs. (37), (44), and (45) and the regularity of the remaining volume integral as discussed above. 

The radiation condition (9) immediately follows from Eqs. (37) and (16) as a consequence of the 

regularity of the integrals for ∈ , as discussed in the case of Eq. (42). 

To conclude this section we note that the above derivations can in principle be made shorter 

using the calculus of distributions (generalized functions); see, e.g., Ref. [9]. But that would not 

necessarily be clearer, since then the singularities of the integrals would be handled implicitly. 

Moreover, the above derivations apply automatically to the case of interfaces with a finite number 

of vertices, edges, and even intersections, except for points  approaching a surface singular point 

(since then the fields are not necessarily bounded, but integrable). The boundary conditions (7) are 

then valid at all points on the surface except for the singular ones. 

VII. EXISTENCE AND UNIQUENESS OF SOLUTION 

A detailed discussion of existence and uniqueness requires mathematical concepts that are beyond 

the scope of this paper. Thus we mostly consider and generalize the previously published results, 

which are somewhat fragmentary since each publication imposes different limitations on the 

constitutive parameters of the scatterer. And we switch to using  (instead of ) to simplify the 

discussion of those limitations. Also note that owing to the equivalence shown in Section VI, we 

discuss the scattering problem in general (Section II), that is, not limited to a particular integral 

equation (38). 
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The analysis of the VIE is the easiest when ( ) is smooth in the whole ℝ , i.e., there is no 

sharp boundary [15,21]; then the classical Riesz–Fredholm theory of integral operators can be 

applied to prove both existence and uniqueness of solution. In Ref. [21], a positive ℜ ( )  is 

assumed from the outset (in addition to the assumption ℑ ( ) ≥ 0), while Ref. [15] mentions 

without proof that a sufficient condition of uniqueness is ℑ ( ) > 0 for any passive host 

medium.7 The latter condition is physically reasonable, since any nontrivial solution of the 

homogeneous equation (38) (i.e., without ) would lose energy inside the particle. 

For particles with smooth (potentially nested) surfaces, both the existence and the uniqueness 

of solution have also been explicitly demonstrated [12,14], although those papers analyze the 

integro-differential equation (39). Moreover, Ref. [14] considers only real positive  and ( ), 
while Ref. [12] considers an arbitrary passive host medium (ℜ( ) > 0 and ℑ( ) ≥ 0) and ℜ ( ) >  (an arbitrary positive constant)8 and ℑ ( ) ≥ 0. If the latter inequality is strict 

almost everywhere in  then ( ) does not need to be smooth. Similar conditions of smooth ( ) 
with a strictly positive real part are used in Chapter VI of Ref. [2]. Chapter 3.5 of Ref. [3] proves 

that the scattering problem has a unique solution for ℑ ( ) >  almost everywhere in  (with 

no limitations on ℜ ( ) ), but considers only a non-absorbing host medium. Alternatively, a 

simple proof of uniqueness has been given in Chapter 9.1 of Ref. [16] using the Rellich lemma, but 

it applies only to a positive real ( ) and any passive host medium. 

It is important to note that all of the above conditions on constitutive parameters are 

sufficient, but not necessary for both uniqueness and existence. That is why there is no 

contradiction in the differences between those conditions. The necessary conditions are intimately 

related to the spectrum of the linear integral operator  defined by Eq. (38): ℰ = ℰ . (54)

Recall that the operator spectrum is a set of complex numbers  such that ( − ℐ) does not have a 

bounded inverse, where ℐ is the identity operator. This spectrum consists of a discrete spectrum 

(isolated eigenvalues)9 for which there exists a bounded solution of ℰ = ℰ, and an essential 

spectrum for which ( − ℐ)  exists but is unbounded [15,22]. The lack of uniqueness and 

existence of the scattering problem is, then, equivalent to 0 belonging to the discrete and essential 

spectrum of , respectively. 

For an everywhere smooth ( ) (and a passive host medium), the essential spectrum exactly 

corresponds to the image (set of all values) of the function (ℝ ) [15], independently of the size or 

                                                 
7 Note that here the absolute permittivity is used instead of the relative one. 
8 This condition is used to prove the coerciveness of a certain sesquilinear form. 
9 This may also contain a continuous part, but we do not discuss it further. 
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shape of the scatterer. For homogeneous scatterers with sharp boundaries, there are certain 

indications that it spans a line from 1 to  [15,23], as if there is a narrow smooth transition at the 

boundary. This is equivalent to Eq. (38) being not solvable for a negative real . Recently, Costabel 

et al. [24] proved (by considering only a non-absorbing host medium) that the essential spectrum 

consists only of points 1, , and ( + 1) 2⁄ . Markkanen [22] generalized this result to a particle with 

edges and vertices, adding intermediate values determined by the corresponding solid angles. 

However, the essential spectrum is not invariant to the point-wise multiplication [15], e.g., by ( ) − 1, which is used to transition between several equivalent forms of the VIE, using the electric 

field, induced current, or potential as the main variable [25]. Moreover, the remainder of the line 

from 1 to  contains eigenvalues corresponding to static ( → 0) shape resonances, which follows 

from physical reasoning that a positive real  cannot support resonances [23]. For instance, a sphere 

much smaller than the wavelength has a resonance for = −2, thus the corresponding  has an 

eigenvalue for ( + 2) 3⁄  [22]. More generally, Budko et al. [26] proved that the eigenvalues of the 

static scattering operator are contained in the convex hull of (ℝ ), denoted hereinafter as Conv (ℝ ) .10 To conclude, a practical solution of the VIE for a non-positive real  is at least 

problematic, so one may prefer to avoid this region as a necessary condition for a well-behaved 

solution. 

Additional eigenvalues of  appear with increasing | |. We are not aware of any general 

bounds on these “resonant” eigenvalues for an arbitrary ( ), apart from the uniqueness conditions 

discussed at the beginning of this section. Thus, we limit the discussion to a homogeneous scatterer 

with a relative permittivity . Then the integral operator  can be decomposed as follows 

[cf. Eq. (38)]: = + ( − 1) ( ), (55)

where  depends on the scatterer geometry and , but not on . In particular, the spectrum of (0) 
belongs to the interval [0,1], as discussed above. Discrete eigenvalues for such a scatterer are 

directly related to so-called morphology-dependent resonances, which are mostly studied in the 

framework of the Lorenz–Mie theory for a single sphere [27]. The latter reduces to finding the poles 

of the Mie coefficients  and , or, equivalently, the zeroes of their denominators; this can be 

summarized as ∃ ∈ ℕ: ( , ) = 0, (56)

where =  is the complex size parameter ( > 0 is the fixed sphere radius) and  numbers both 

the order and type of the Mie coefficients. Each function  can be expressed in spherical Bessel 

                                                 
10 The original proof is for an everywhere smooth ( ), but it can be extended to a piecewise smooth one. 
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and Hankel functions; importantly, it is an analytic function of two complex variables. Any solution ( , ) of Eq. (56) is equivalent to −1 ( − 1)⁄  belonging to the spectrum of ( ⁄ ). 
Many simulations have shown that resonant values of  are in the fourth quadrant for > 0 

(real positive ) [23,28,29],11 which naturally corresponds to the condition ℑ( ) < 0. In this case 

the eigenvalues of ( ) have a negative imaginary part, which has been confirmed by direct 

calculations for the discretized operator [23]. Alternatively, one may consider a fixed  and search 

for zeroes of  as a function of . For > 0, they are located in the fourth quadrant of the 

complex plane, which corresponds to ℑ( ) < 0 [30,31]. Both these special cases imply that  is 

in the fourth quadrant (or ℑ( ) < 0) at a pole. 

Only several papers consider -poles for complex . Hunter et al. [32] studied the shifting of 

these poles when a small imaginary part is added to a real , using the Taylor expansions. The 

calculations were performed for 12 specific poles (resonances), all close to the real positive axis in 

the complex plane of  (for an initial real ). Interestingly, one can rewrite both the change of  

and shifts of the -poles as rotations (change of the complex arguments); then the corresponding 

changes of the complex arguments satisfy ∆ arg( ) ≈ −∆arg( ), implying arg( ) ≈ const. In 

particular, the value of the ratio ∆ arg( ) /∆ arg( ) is between 0.90 and 0.98 for the resonances 

considered in Ref. [32]. This value being slightly smaller than 1 is confirmed by formulae for the 

resonance width given by Eq. (47) of Ref. [33], which is directly related to arg( ) at the pole. 

Unfortunately, the above first-order analysis cannot definitively answer whether ℑ( ) and ℑ( ) 
always stay negative (as they are for a real ). Videen et al. [34] showed that the second order of 

the Taylor expansions may be significant for very small values of ℑ( ). Moreover, a direct 

calculation of the trajectory of a single specific pole (Fig. 4a of Ref. [34]) was consistent with ℑ( ) < 0. 

Similar results (negative-imaginary-part eigenvalues of ( ) for > 0) have been shown 

for cubes [15,35]. Moreover, a single simulation of a vacuum cube inside an absorbing host medium 

with ℜ( ) = 1 led to the spectrum consistent with both ℑ( ) < 0 and ℑ( ) < 0 [15]. 

To conclude this section, we put forward a conjecture that for any homogeneous scatterer 

inside a passive host medium the “singular” values of  (corresponding to the essential, static, and 

dynamic spectra) satisfy either < 0 or both ℑ( ) < 0 and ℑ( ) < 0. This is equivalent to  

belonging to the complex wedge: + arg	( )≤ arg( ) < 2 , where we assume the range of arg 

function to be [0,2 ) for convenience. Thus, the sufficient conditions for uniqueness and existence 

of solution (for arbitrary size and shape) are conjectured to be 

                                                 
11 Some of the cited papers use the exp	(i ) notation, which corresponds to a reverse sign of the imaginary parts of , 
, , etc. When discussing their conclusions, we implicitly transform them to conform to the notation used in this paper. 
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0≤arg( ) < + arg( ), | | > 0. (57)

Equation (57) is illustrated in Fig. 4, separately for  and , defining the allowed regions  and , 

respectivly. The negative real  are non-physical for the material properties, but the VIE causes no 

issues with that if the host medium is absorbing. 

 

Fig. 4. Conjectured sufficient conditions for the existence and uniqueness of the solution of the 

scattering problem in a passive host medium, described as blank areas (  and ) in the complex 

plane for (a)  and (b) , respectively. The shaded areas contain different kinds of resonances (see 

text). The dashed lines in (a) and (b) extend from the origin through the values of  and its 

complex conjugate, respectively. 

For inhomogeneous scatterers, an additional condition is that the corresponding singular 

domains be not approached by  or  infinitely close, i.e., ∃ > 0:	∀ ∈ ℝ , 0≤ arg ( ) < + arg( ) − and | ( )| >  (58)

or, equivalently, that the closure12 of the set of all values of ( ), denoted ( ), satisfy Eq. (57) 

pointwise, i.e., ( ) ⊂ . Consistent with the abovementioned results of Budko et al. [26], we 

also require that Conv ( )  not contain the origin, which is equivalent to ( ) being 

contained in the ring sector centered at the origin of the complex plane (a circular sector excluding 

the neighborhood of the origin) with an opening angle smaller than , or to ∃ > 0:	∀ , ∈ V , arg ( ) − arg ( ) < − . (59)

Moreover, Eqs. (58) and (59) can be combined into the single condition Conv ( ) ⊂ ⟺ Conv (ℝ \ ) ⊂ , (60)

where we have made use of the fact that in the first part ( ) may be augmented by ,13 so that 

the equivalence follows from the rotation and scaling of the complex plane. We have also excluded 

all discontinuities from the image of , since the corresponding values ( ) are not relevant for 

the scattering problem and can be arbitrary. This is further discussed in Section IX. 

                                                 
12 The set plus all its limiting points (the boundary), further denoted by the overline (not to be confused with the 
dyadics). 
13 In other words, the condition is equivalent to the same but with ( ) ∪ { }, since the line from  to any point in 
the blank area of Fig. 4(a) is always entirely within this area. 
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It cannot be overstressed that the above is only a conjecture. While it conforms to all the 

conclusions of the above-discussed literature, and somewhat generalizes them, we are not aware of 

any general proof. That should be the topic of future research. As an additional note, when the size 

and shape of a scatterer are fixed, only a set of discrete points and, possibly, a line in the shaded 

domain of  (Fig. 4(b)) are actually singular. Thus, for most of the points in this domain the 

scattering problem has a unique solution. However, if the shape and size of the scatterer are 

arbitrarily varied, these discrete points will move through the whole singular domain and probably 

cover it entirely. Thus, an additional hypothesis is that Eq. (57) is also a necessary condition if the 

uniqueness and existence of solution are required for scatterers of all sizes and shapes. 

VIII. PARTICLES WITH EDGES AND VERTICES 

In this section we further generalize the particle geometry by allowing a finite number of edges and 

vertices, both as singularities of an otherwise regular surface and as intersections of several regular 

surfaces. An example of such irregular geometry is shown in Fig. 5, where sharp corners of the 2D 

image can be interpreted both as point vertices and as sharp edges of the 3D particle shape. 

Importantly, we still define  as maximal connected components of , keeping Eqs. (5) and (6) 

valid. 

 

Fig. 5. An example of a multi-body multi-layered scatterer with piece-wise smooth boundaries and 

interfaces (having a finite number of edges and vertices). Each  is a closed connected surface, but 

not necessarily a regular one; it separates at least two domains, one of which may be the external 

medium. 

The boundary conditions (7) are still valid for all parts of , except for singularities, but 

alone they are no longer sufficient to make the problem unambiguous. Additional assumptions must 

be invoked, e.g., that the charges and currents localized at shape singularities are zero, i.e., they do 

not radiate any energy (Chapter 9.2 of Ref. [16]): 



20 
 

lim→ d ⋅ ℜ[ ( ) × ( )∗] = 0, (61)

where the closed surface  contracts around the edge or vertex, e.g., having the shape of a capped 

curved cylinder and sphere, respectively. This has also been stated to be equivalent to the physically 

reasonable requirement of locally finite energy of the electromagnetic field (i.e., the energy is finite 

inside any bounded volume) or that ( ) and ( ) are locally square-integrable [3,16], and 

guarantees finite charge and currents on the whole . Unfortunately, we are not aware of a 

detailed discussion of this equivalence in the literature. Thus, we further consider the locally square-

integrability of the fields as a primary assumption and note that Eq. (61) follows from it and the 

Poynting theorem [4]: d 	 ⋅ [ ( ) × ( )∗] = −i d ( ( )∗| ( )| − | ( )| ). (62)

Importantly, Eq. (62) can be applied to surfaces  crossing the scatterer interfaces, since Eq. (7) 

implies the continuity of the integrand over the interfaces14 and the integration surface can be 

deformed to circumvent the interfaces (Fig. 6). The integrability of the integrand on the right-hand 

side of Eq. (62) implies that it can be considered both over the finite volume enclosing the shape 

singularity ( ) and over the same volume with the singularity excluded ( \ ), and the result is the 

same in the limit → 0. But the difference between these two approaches on the left-hand side of 

Eq. (62) is exactly Eq. (61) before taking the real part.15 

 

Fig. 6. An example of the deformation of the integration surface to circumvent the scatterer 

interfaces (shown by dashed curves), from (a) to (b). The surface integral does not change for any 

integrand that is continuous across the interfaces, while the volume integral is the same for any 

integrable function. 

                                                 
14 ⋅ ( × ∗) = −( × ) ⋅ [ × ( × ∗)] 
15 Proving the reverse implication (from Eq. (61) to square integrability of the fields) is substantially more involved. 
The real part of Eq. (62) directly implies only integrability of ℑ ( ) | ( )| , which is not helpful if the medium is 
neither absorbing nor active in the neighborhood of the shape singularity. In this case, one may assume that Eq. (61) is 
valid before taking the real part, but that is unjustified unless one relates the regularity of the real and imaginary parts of 
Eq. (61) using general properties of the electromagnetic field, e.g., through the VIE. We leave the latter for future 
research. 
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Stronger conditions have also been proposed, e.g., the “tip condition” that singularities of  

and  be weaker than  has been proven sufficient for an infinite cone [36]. Evidently, the tip 

condition also implies Eq. (61) and square integrability of the fields. To summarize, the fields can 

be unbounded when approaching shape singularities, but only weakly so in the sense specified 

above. 

In discussing the VIE in the presence of edges and vertices, we first note that the above 

condition of locally square-integrable fields is convenient to have anyway, since otherwise the 

whole application of the VIE (the calculation of the integrals involved) is ambiguous. Although we 

avoided function spaces from the outset, any mathematically rigorous discussion of the VIE 

includes a specific function space in which the solution is searched for. In terms of ( ) alone, it is 

typically the space in which both the function and its curl are locally square-integrable [13,14,37]. 

Thus, given this physical assumption, the VIE seems to be directly applicable to particles with 

edges without any changes. In particular, this conclusion is supported by the successful numerical 

application of the DDA to a cube, exhibiting even better accuracy than that for smooth shapes [6]. 

However, the above derivations connecting the VIE with the differential Maxwell equations do 

require some modifications. 

First, we denote the -neighborhoods of the shape singularities as , …, bounded by 

closed surfaces , , …, respectively [cf. Eq. (61)]. Some complications arise from the fact that 

shape singularities may intersect (e.g., edges end up at vertices); in such cases we define the 

corresponding  to enclose the whole combined singularity, so that the minimum distance from 

any point on the surface to the singularity equals . For instance, a cube will require only a single 

such surface, being a union of 8 incomplete spheres and 12 side surfaces of a cylinder. We further 

define the total volume around the singularities  and singularity-excluded domains 	  and , ≝ , ≝ \ , ≝ \ , (63)

and partition each interface with excluded singularities \  into several pair-wise disjoint regular 

parts  (the latter are numbered sequentially throughout the whole scatterer). Moreover, each  is 

partitioned into two or more segments , , , , … belonging to different domains (out of , , 

, …). Any two of these segments touch only on one of  (if at all), which together with Eq. (7) 

implies that both × ( ) and × ( ) are continuous across the whole . An example of the 

described singularity exclusion is shown in Fig. 7, illustrating the newly introduced definitions. To 

avoid ambiguity, we take the default orientation of the normal to ,  to coincide with the outward-

pointing normal to , while the orientation of the normal to  is not relevant for further 

discussion. 
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Fig. 7. An example of the exclusion of shape singularities from the interfaces and volume domains. 

See the main text for an explanation of the symbols; the dashed lines denote the parts of the original 

irregular surfaces  (cf. Fig. 5) falling inside the neighborhood of singularities. Each  is a regular 

connected surface separating exactly two domains, one of which may be the external medium. 

To derive the VIE from the differential Maxwell equations, we proceed analogously to 

Section V. We write down Eq. (34) for each  and add them up together with Eq. (36) for .16 

Each  is a union of one or more  and zero or more , , while  additionally includes ∆ (in 

the limit ∆→ ∞). In the final sum, each  occurs exactly twice and with opposite signs canceling 

each other, while each ,  occurs only once. Applying additionally Eq. (31) and ( ) + ( ) = 1 − ∪ ( ) (64)

[cf. Eq. (41)], where ≝ ∪ , we obtain ( ) = lim→ d ( , ) ⋅ ( )\( ∪ ) − ⋅ ( ) + d 	 ( , ) (65)

for ∈ ℝ \( ∪ ). 
When we take the limit of  contracting to the shape singularities, the volume integral in 

Eq. (65) behaves regularly owing to ( ), and hence ( ), being square-integrable inside . 

Therefore, the limiting result is the integral over \  exactly as in Eq. (37). The only remaining 

proposition to prove is that lim→ d ( , ) = 0, (66)

where δ should not be mistaken for the parameter of the volume integral in Eq. (65). For a fixed , 

Eq. (66) follows from the trivial analysis of singularity orders. In particular, square integrability of 

 and  inside  implies that 

                                                 
16 Strictly speaking, the entire boundaries  and  must be smooth, which does not hold at junctions between  

and , . However, the corresponding junctions can be locally smoothed (at a scale much smaller than ) without 
changing any relevant integrals due to the boundedness of the fields in a small neighborhood of a junction. 
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| |, | | = ℴ( ), near edge,ℴ ⁄ , near vertex, (67)

where  denotes the distance from the edge or vertex, respectively. Note that Eq. (67) is a weaker 

condition than the abovementioned tip condition; still it implies d 	 ( , )	 = ℴ(1), near edge,ℴ ⁄ , near vertex, → 0. (68)

For a combined shape singularity with edges and vertices, Eq. (68) is valid for each simple part of 

, while there is only finite number of such parts. 

To finalize the equivalence we note that the reverse path from the VIE (with a locally-square-

integrable solution) to the differential Maxwell equations and boundary conditions remains exactly 

the same as in Section VI. 

The published literature on the existence and uniqueness of the solution for particles with 

irregular boundaries is scarce and was partly mentioned in Section VII. In particular, Chapter 9.2 of 

Ref. [16] proves uniqueness for a positive real ( ) and any passive host medium, while Chapter 

3.5 of Ref. [3] proves the uniqueness for a non-absorbing host medium and ℑ ( ) >  almost 

everywhere in . van Beurden and van Eijndhoven [13] also considered a non-absorbing host 

medium and assumed both ℜ ( )  and ℑ ( )  to be nonnegative and at least one of them 

positive almost everywhere in .17 Thus, the entire Section VII and its concluding conjecture 

[Fig. 4 and Eq. (60)] remain plausible for general scatterers with irregular boundaries. 

To conclude this section, let us reiterate that the VIE is directly applicable to particles with 

edges and vertices without any modification, and thus can be thought of as being superior to the 

differential formulation which requires extra assumptions. However, this is not a fundamental 

difference between the integral and differential formulations, but rather a consequence of a specific 

problem in which a natural assumption of local square integrability of the VIE solution (a choice of 

the solution space) is sufficient to eliminate the spurious solutions of the original differential 

problem. Moreover, not every possible VIE for electromagnetic scattering has this desirable 

property. It holds if Eq. (38) or (39) is reformulated in terms of ( ) or ( ) ≝ ( ) ( ), requiring 

only that ( ) be nonzero almost everywhere [13]. However, it is not so for the so-called potential 

VIE (with scalar and vector potentials as unknowns). In particular, when applied to a homogeneous 

cube with  close to certain negative real values, it leads to spurious solutions localized at edges and 

vertices [22]. Those solutions seem to have nonzero charges/currents on edges and vertices that 

should be avoided according to Eq. (61). This can be explained by the fact that square integrability 

                                                 
17 There seems to be a minor error in their derivation: the absolute value in Eq. (16) of Ref. [13] should be replaced by 
the real part for coerciveness to hold. This implies that ( ) should not be purely imaginary as well. However, this is 
not essential, since this case is covered by Cessenat [3] anyway. 
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of the potentials (naturally occurring for the discretized solution of the integral equation) does not 

imply square integrability of the fields (due to the extra differentiation). Hopefully, this can be 

alleviated by a more careful choice of the testing functions for the discretization of the integral 

operator, as mentioned in Ref. [22]. 

IX. CONTINUITY WITH RESPECT TO ( ) 
All previous sections vividly demonstrate how complexities of the scatterer morphology result in 

complications of the differential scattering problem (extra assumptions) and derivations of its 

equivalence to the VIE. In the following, we draft an alternative approach which mostly deals with 

the simplest case of an everywhere smooth ( ), more specifically, a Hölder-continuous one. In 

this case the VIE is equivalent to the differential Maxwell equations (without boundary or any 

additional conditions) – see the discussion following Eq. (38). The corresponding operator is well-

behaved [15,21], as discussed in Section VII, and the solution is smooth. So the main idea is to 

replace the solution for an arbitrary scatterer (with sharp and irregular interfaces) by the limit of 

solutions for a smooth ( ). 
This idea has been mentioned in various forms in the literature. For instance, Chapter 9.1 of 

Ref. [16] mentions that the result for an edge can be defined as a limit of the results for a smooth 

boundary, when the latter is transformed into an edge. Kline [38] proposed a general way to 

generalize the differential Maxwell equations to encompass discontinuous fields and/or material 

properties, based on the postulation that the integral representation (not necessarily a VIE) derived 

for the smooth case directly applies to the discontinuous case. Moreover, it is postulated that the 

limit of solutions for the continuous case is the proper solution for the discontinuous case, provided 

the latter allows several solutions. The boundary conditions (7) naturally appear in this approach as 

an implication of the VIE (see Section VI), which has been mentioned specifically in Ref. [14] as a 

consequence of assuming that the Maxwell equations are satisfied in ℝ  in the generalized-function 

sense. However, we are not aware of any detailed description of this approach, not to mention a 

rigorous proof. Thus, we start filling this gap in the following, although we may pose more 

questions than we are currently able to answer. 

First, a wide class of discontinuous functions ( ) can be approximated by a sequence of 

everywhere smooth (Hölder-continuous) { ( )} in some functional, e.g., , norm, i.e.,  lim→ = , (69)

where handwritten symbols denote functions in contrast to their values at a particular point 

[cf. Eq. (54)]. We do not give rigorous definitions here, but that is related to the space of smooth 

functions being dense inside (ℝ \ ) or a similar space – a standard topic of functional 
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analysis. At a minimum, all scatterers with a finite number of irregular interfaces discussed above 

can be represented in this way. 

Second, we note that the operator  in Eq. (54) implicitly depends on , hence the solution 

of this equation is given by ℰ = ( )ℰ . (70)

The most important part of the whole derivation is the dependence of ℰ on  for a fixed ℰ , in 

particular, whether this dependence can be assumed continuous. The conjecture is that lim→ ( )ℰ = ( )ℰ (71)

in some domain of , where we additionally assume that  is well-defined for  and each of 

, i.e., the solution of each respective scattering problem exists and is unique (as discussed 

below). While the continuity seems reasonable for a smooth resulting , it is not at all evident for 

discontinuous ones which represent our main interest. The potential failure of Eq. (71) may be 

caused by several factors: the limit may (i) not exist, (ii) be unbounded (i.e., each ℰ ≝( )ℰ  is locally square integrable, but its limit is not), or (iii) be not equal to the right-hand 

side. 

The detailed rigorous analysis of the continuity conjecture in proper functional (Sobolev) 

space remains the subject of future research. On one hand, it is further complicated by the fact that 

the dependence of  on  is of the form “identity + linear” [cf. Eq. (55)], which makes  non-

linear with respect to . On the other hand, the nature of this dependence is multiplicative 

[cf. Eq. (3)], thus making it easily invertible. Moreover, the VIE is probably less sensitive to shape 

features than surface-integral formulations (see, e.g., Chapter 5 of Ref. [39]). However, it is for the 

latter that certain continuity has actually been proven, albeit only for perfect conductors with 

smooth surfaces (see Chapter 7.2 of Ref. [21]). 

Third, if lim→ ℰ 	exists, it is natural to postulate it as the definition for the solution of the 

scattering problem for an irregular . If, additionally, this limit equals ℰ from Eq. (70) (i.e., the 

continuity conjecture holds) then this solution can be obtained from the VIE with no modifications. 

While this concludes the template of a proof, we further discuss three related issues which 

give some additional confidence in the continuity conjecture. 

We start with a discussion of the existence and uniqueness, i.e., whether ( ) exists and 

is bounded and whether it follows from the regularity of ( ). Most of the results from 

Section VII apply but require minor modifications to account for taking a limit. To this end, we 

analyze the general, albeit hypothetical condition (60). On one hand, wherever  is smooth, the  

convergence of Eq. (69) implies a point-wise convergence, at least for a subsequence of ( ); 
hence,  
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(ℝ \ ) ⊂ (ℝ ). (72)

On the other hand, for any piecewise smooth , as considered in Section VIII, we can construct 

 to have only the same values as those of  and “in between”. Specifically, we set ( ) =( ) for all , except in a small neighborhood  of  ( → ). Inside this neighborhood, ( ) changes smoothly from the value of ( ) on one side of the boundary to that on the other. A 

particular S-shaped function to use is not important, but the corresponding intermediate values of ( ) = ( ) should all be on the line in the complex plane between the two values of .18 Near 

the interface intersections (see, e.g., Fig. 5), ( ) should smoothly connect three or more values 

of ( ) on different sides of the shape singularity with the corresponding intermediate values of ( ) limited to the convex hull of the corresponding values of . Thus,19 (ℝ \ ) ⊂ (ℝ ) ⊂ Conv (ℝ \ ) ⊂ Conv (ℝ \ ) . (73)

Equations (72) and (73) imply the “continuity” of the condition (60). If it is satisfied for all 

 simultaneously and with limiting points, i.e., Conv ⋃ (ℝ ) ⊂ , then the limiting 

scattering problem is well-defined. Conversely, for any piecewise smooth  satisfying Eq. (60), 

one can construct a converging sequence of smooth functions , for each of which the scattering 

problem is well-defined. The latter supports the validity of using the VIE for such an . 

Let us further consider the convergence of the spectrum of ( ). On one hand, Section VII 

presents some controversial evidence against such convergence. While considering the simplest 

case of a homogeneous sphere in a vacuum, different authors suggest that the essential spectrum is 

either a line from 1 to  [15] or only three points: – 1, , and (1 + ) 2⁄  [24]. However, for any 

smooth approximation  constructed above, the essential spectrum is a line from 1 to  [15]; 

hence, so is its limit.20 This apparent difference remains for the whole spectrum of the operator as 

well, since the latter differs from the essential spectrum only at a discrete set of points. 

On the other hand, all these differences disappear if we take the convex hull of the spectrum. 

Moreover, according to Ref. [26] for arbitrary piecewise smooth scatterer the convex hull of the 

essential spectrum Conv (ℝ \ )  contains the discrete spectrum in the static limit, and, thus, 

equals the convex hull of the whole spectrum for the static operator ≝ . At the same 

time, Eq. (73) implies Conv (ℝ ) = Conv (ℝ \ ) → Conv (ℝ \ ) . (74)

                                                 
18 ( ) should not be confused with ( ); the former is used only with the subscript . 
19 The presented proof can be made rigorous for a piecewise smooth  by explicitly (and tediously) constructing the 
described smooth junctions. However, we are not certain that this can be done for an arbitrary  satisfying Eq. (69). 
20 The intermediate values on this line are thinned out in the sense that they correspond to  whose volume shrinks to 
zero. Hence, the effect of this part of the essential spectrum on the solution of the VIE in the  space is unclear. 
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So we have a convergence of the convex hull of the spectrum of . This does not tell us anything 

about the discrete spectrum of the operator for ≠ 0, but we may expect the continuity to hold for 

those discrete eigenvalues, since the most problematic part of , and hence of , is the strongly 

singular static part  which fully manifests itself in . The continuity of the convex hull of the 

spectrum is much weaker than that implied by Eq. (71), but does show some similarity of its left- 

and right-hand sides, e.g., in terms of their numerical computation.21 

Thus, we arrive at the convergence of the discretization schemes for the numerical solution of 

the VIE. The latter can be the topic of a separate review (see, e.g., Refs. [5,22]); here we only note 

that discretization effectively replaces the integral operator  with an operator  having a finite 

rank N. It is typically assumed that lim→ ( )ℰ = ( )ℰ , (75)

which is a manifestation of so-called numerically-exact solutions [37,40] and is realized in practice 

for the VIE discretized with proper basis and testing functions. Importantly, any bounded finite-

rank linear operator is equivalent to the matrix and, thus, is continuous: lim→ ( )ℰ = ( )ℰ . (76)

We may even choose a sequence of smooth functions  such that22 ( ) ≡ ( ), ≥ , (77)

but this is not required for the following. 

An important hypothesis is the uniform convergence of the limiting sequence in Eq. (75) for 

all scatterer functions in the neighborhood of , or at least for the sequence { }. It implies the 

possibility to interchange the limits leading, along with Eq. (76), to lim→ ℰ = lim→ lim→ ( )ℰ = lim→ ( )ℰ = ℰ,	 (78)

which is exactly the continuity conjecture (71). It is not clear, however, whether proving the 

uniform convergence of Eq. (75) is fundamentally easier. Conversely, a proof of Eq. (71) would 

actually justify the use of the discussed numerical methods for a discontinuous , which may seem 

questionable since they make no distinction between  and  (for a large enough  for a fixed 

). The latter has been discussed and practically justified in the DDA simulations of light scattering 

by a cube [6]. Moreover, Eq. (78) can be generalized to describe the convergence of the spectrum of 

the discretized operator which has been analyzed numerically for a few examples in the framework 

of the DDA [19,41]. 

                                                 
21 The convergence of an iterative solver is determined by the envelope of the spectrum [23], which is not necessarily 
the convex hull, but rather a simply connected superset of the spectrum. However, the construction of smooth 
approximations before Eq. (73) can be modified such that (ℝ ) lies within this envelope. 
22 For instance, in the simplest case of the DDA with a cubical discretization and pointwise testing (the collocation 
method) only the values of ( ) in the centers of the cubes matter. Any smoothing of  between these nodes does not 
change the discretized operator, e.g., as discussed before Eq. (73). 



28 
 

To finalize this section, we stress once again that the rigorous proof of the continuity 

conjecture (71) or, more specifically, the evaluation of specific conditions on the underlying 

functions that make it valid, remains to be done. However, there exists additional supporting 

physical reasoning. Since the physical properties of the materials are discontinuous at atomic scales, 

the macroscopic Maxwell equations (1) are typically derived from the microscopic ones by 

averaging over some finite size  [40]. Hence, Eq. (1) is valid only down to the scale of , and any 

variation of  at a smaller scale should not affect the solution. In other words, when using Eq. (1) 

we implicitly assume that any such variation of  has negligible effect for large enough scatterers, 

which is similar to assuming the uniform convergence of Eq. (75). The only other option is to 

rigorously average the microscopic Maxwell equations near the material discontinuities, 

considering a realistic placement of atoms, the interaction of electrons, etc., which will be entirely 

daunting near the intersection of several interfaces. Surely, this physical reasoning is not a substitute 

for a rigorous mathematical proof, but it helps achieve a certain level of mental comfort. 

X. CONCLUSION 

Consistent with the objectives formulated in the Introduction, we have presented a general 

derivation of the VIE for a very general type of scatterer in the form of an arbitrary spatially finite 

group of particles, including those with edges, corners, and intersecting internal interfaces, 

immersed in a passive host medium. We have thoroughly discussed the existence and uniqueness of 

the VIE solution related to the spectrum of the corresponding integral operator. Moreover, we have 

shown that the conjectured continuity of the inverse integral operator with respect to the refractive-

index function leads to an even simpler derivation of the VIE. Whenever possible, we have closely 

followed previously published derivations and constructed a new derivation and new conjectures to 

fill the existing gaps. Importantly, we believe that the resulting description is reasonably self-

contained and complete, covering the VIE from all possible conceptual perspectives. As such, our 

paper could also be considered a review of the current state-of-the-art of this subject. 

Yet a lot of work remains to be done. First, in order to make the derivations widely accessible, 

we have refrained from complete mathematical rigor in certain places, e.g., in terms of specific 

smoothness requirements for the fields and constitutive parameters. This issue seems to be a rather 

technical one and should be resolvable along the lines of the referenced rigorous accounts. Second, 

we formulated two important conjectures: (i) the general condition on the electric permittivity of the 

scatterer and the host medium to guarantee the existence and uniqueness of solution, and (ii) the 

continuity of the VIE solution with respect to the refractive-index function. To attain the full 

predictive power, these conjectures need to be rigorously proved with a specification of the function 

spaces in which they are satisfied. Third, it is highly desirable to extend this complete analysis to 
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anisotropic and magnetic materials. Accounting for material anisotropy is straightforward and 

mostly amounts to replacing the scalar electric permittivity (or refractive index) by a dyadic one and 

tracing it appropriately through all the derivations. The consideration of magnetic materials should 

result in replacing a single VIE with a system of two coupled VIEs, for the electric and magnetic 

fields, respectively. The derivation of such VIEs can be expected to be lengthier, but not 

fundamentally more involved. However, the existence and uniqueness conditions will require a 

separate analysis. 
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